Boundary conditions of conceptual spaces (Bounces)
2023 – 2026

The topographical structure underlying the representations of conceptual knowledge remains vividly debated. Two main accounts can be distinguished: the spatial account and the non-spatial account. We hypothesise that contextual factors determine the topographical structure at the cognitive and neural level. This proposal aims to delineate the conditions that define the topography of conceptual knowledge. Two major questions will be addressed:
1. What is the impact of contextual factors on the architecture of conceptual knowledge and its behavioural and neural expression?
2. What role do other potential boundary factors such as expertise and familiarity with concepts play in the construction of conceptual representations?
We will manipulate the transitivity of a set of elements as well as the flexibility of the architecture when learning and combining several sets in behavioural experiments and using functional imaging. The project investigates these questions in healthy adults.
The project is part of an international grant, involving the University of York (S. Goebel & T. Hartley) and the University of Potsdam (M. Fischer). Our partner in York will focus on developmental aspects while our partner in Potsdam will focus on the question whether the organizational principles of conceptual knowledge transgress to the motor level.
On the Cognitive principles underlying operational biases in the temporal domain.
2022-2025

Space, time and number are intertwined dimensions at the cognitive and neural level. Recent evidence suggests that numerical and temporal information is projected onto a spatially organized conceptual dimension (i.e. a conceptual space). The Operational Momentum Effect (OME) is a consequence of the spatial character of the mental magnitude representation and describes the tendency to overestimate the outcome of additions and underestimate the outcome of subtractions. An analog effect has been described in the temporal domain (Bonato, Fias & Zorzi, 2021). Compared to a baseline condition without arithmetic combination, participants overestimated the duration of addition and underestimated the duration of subtraction (Temporal Momentum Effect, TME). The current project further characterizes the underlying functional principles of the TME in a number of psychophysical experiments with healthy adults. The results will provide important information about the generalizability of the TME and will finally help understand how humans code and operate on temporal information.